Intro
The professor requests the installation of the CUDA environment on the server computer.
Table
-
Visual Studio
-
Anaconda
-
Device Specification
-
CUDA and cuDNN
-
TENSORFLOW
-
PyTorch
1. Visual Studio
Visual Studio 2022 17.0 community product not found
Uncertainty of higher version[ex)17.6] VScode stability and reliability
Choose to install VScode 2019 community product instead.
2. Anaconda
Installed with no specific changes
Anaconda Virtual Environment setting
(base) PS C:\Users\ParkLab> conda create -n tf310 python=3.10
(base) PS C:\Users\ParkLab> conda activate tf310
(tf310) PS C:\Users\ParkLab>
3. Device Specification
Device Manager >
NVIDIA RTX A6000 (Quadro)
4. CUDA and CuDNN
NVIDIA Driver Download
https://www.nvidia.com/Download/index.aspx?lang=kr
CUDA - GPU match
https://www.wikiwand.com/en/CUDA#GPUs_supported
Compute Capability check
Micro-architecture : Ampere
Compute capability: 8.6
Available CUDA SDK version : 11.1-11.4
Fixed CUDA ver. - 11.2
CUDA Installation
CUDA toolkit archive https://developer.nvidia.com/cuda-toolkit-archive
CUDA-11.2 https://developer.nvidia.com/cuda-11.2.0-download-archive
cuDNN Installation
install available after login
https://en.wikipedia.org/wiki/Quadro
extract zip file
5. TENSORFLOW
Tensorflow - CUDA build configuration
https://www.tensorflow.org/install/source_windows?hl=en#gpu
TF-2.10.0
CUDA 11.2
cuDNN 8.1
tensorflow installation
(tf310) PS C:\Users\ParkLab> conda install tensorflow==2.10.0
but by unknown reason, When I install tensorflow with conda command, (conda install tensorflow==2.10.0), it couldn’t find GPU device via tensorflow. I changed installation option to pip.
(tf310) C:\Windows\system32>conda uninstall tensorflow
(tf310) C:\Windows\system32>pip install tensorflow==2.10.0
(tf310) C:\Windows\system32>pip install brotli
Tensorflow GPU device connection check
(tf310) C:\Windows\system32>python Python 3.10.11 | packaged by Anaconda, Inc. | (main, Apr 20 2023, 18:56:50) [MSC v.1916 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> tf.test.is_built_with_cuda()
True
>>> tf.config.list_physical_devices('GPU') [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU')]
6. PyTorch
create new environment for PyTorch option.
(base) C:\Users\ParkLab>conda create -n pt39 python==3.9
(base) C:\Users\ParkLab>conda activate pt39
(pt39) C:\Users\ParkLab>conda pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu111
Installation details:
torch-1.10.2+cu111
torchvision-0.10.1+cu111
torchaudio-0.10.1+cu111
(pt39) C:\Users\ParkLab>python Python 3.9.16 (main, Mar 8 2023, 10:39:24) [MSC v.1916 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True
🎉Complete setting Deep learning environment
on a LAB computer which costs more than $15,000🎉
BANDALCOM🐻